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Abstract

The WLRS (Wettzell Laser Ranging System) allows the simultaneous tracking of
satellites on two different wavelengths. These are the fundamental frequency of Nd :YAG

at 1.064 pm and the second harmonic at 532 nm. Range measurements to the satellite
LAGEOS were carried out with different experimental set- ups, after developing a de-

tector unit based on a silicon avalanche photodiode in Geiger mode, which is sufficiently

sensitive in the infrared domain. An approach towards a quantitative interpretation of

the data is suggested and discussed briefly.

1 The effect of atmospheric dispersion on satellite ranges

The varying index of refraction of the atmosphere can be considered one of the most impor-

tant contributions to the error sources for satellite ranges. Following a model of Marini and

Murray [1], the additional time for the laser pulse passing through the atmosphere under an

elevation angle of 90 degrees is as much as 8 ns. This model assumes rotational symmetric

atmospheric layers with respect to the geocenter and has been established with the help

of ba]lon experiments. Inputs to to this model are atmospheric pressure, temperature and

humidity, which are measured around the ranging station. In general it can be said that

the calculated corrections are very precise, so that the requirements for an experimental im-

provement are extremly high [2]. However, orbit fitting procedures on the basis of complex

programs often show a small systematic error, depending on the pointing elevation of the

ranging station. Therefore a better determination of the atmospheric influence is desirable.

2 The experimental set- up

2.1 The 'two-' detector experiment

When the WLRS telescope was designed [3], care had been taken to optimise the signal path

for the fundamental (1.064 #m) and second harmonic (532 nm) wavelength of the Nd:YAG
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laser. The remaining optical components of the ranging equipment were replaced to allow

transmission and reception of these 2 frequencies. In the beginning it was not known if

the second harmonic generating crystal (KD*P) would laterally displace the pulses of the

2 frequencies so far, that there would not be a sufficient overlap of the two signals at
the location of the satellite. During the experiments a weak dependance of the return

rate of each detector with respect to the pointing was noticed. However, the overlap was

found to be acceptable. The WLRS- system uses the same telescope for transmitting and

receiving, therefore the photodetector was placed behind the transmit/receive- switch inside

the thermocontrolled laboratory. This gives the advantage of high signal stability and an

easily accessible working enviroment. Figure 1 outlines the experimental set- up. The receive

signal is split into its two different frequency components at a dichroic mirror. The signal

with a wavelength of 532 nm is reflected towards a microchannel plate (MCP), while the

infrared part of the satellite echo is focused onto the active area of an avalanche photodiode

(APD: SP114) placed in Geiger mode. In its present state, the WLRS is capable of recording

one stop event per outgoing laser pulse only. This causes the detection of either an event
from the MCP or the APD. To achieve a high number of echos from both channels, a consta_nt

delay- line of 44.9 ns was added to the MCP output, before recombining both signal lines at

an impedance matched T - junction and feeding them to the eventtimer. There are two stops
for each measured roundtrip possible, only one of them will be recorded, as the electronics

gets disactivated after processing one event. The delayllne places the less favourable signal
channel to be detected first. When the measured return residuals axe plotted versus time

one can see two signal tracks (fig. 2) separated in range by the delay of the additional

cable. This can be noticed during tracking and indicates, if there are enough recordings for

both laser frequencies. The contribution to each wavelength has to be separated during the

analysis, as all the range information goes to one datafile.

2.2 The 'one-' detector experiment

A slowly varying instability (i.e. drift) in the detector characteristics would be indicated

during the ranging run, as a shot by shot calibration to a fixed target is carried out. To

exclude such effects generally, the experiment was altered to use just one detector. The

dichroic mirror (ref. fig. 1) was removed and the APD recorded both frequencies. The

sensitivity of the diode is higher on 532 nm than on 1.064 #m but, because of the dispersion

of the atmosphere, the infrared signal reaches the detector first. Therefore, a sufficient

amount of data for both signal frequencies can be obtained. For the present this kind

of experiment is restricted to the night hours, as there are no suitable spectral filters for

this application. During tracking, the operator notices the formation of one track only, as

both satellite tracks are separated by their differential atmospheric dispersion delay only,

which contributes as much as 0.6 to 1.8 ns. In figure 3 there is a residual plot for such

a measurement. In the analysis the two tracks also have to be seperated. To calibrate

this measurement a circuit has been developed, which detects the starting oscillation in the

laser after the fire command and forms a trigger signal to gate the APD into the Geiger

mode before the calibration return hits the diode. This process is extremly time critical.

Measurements to the local ground target demonstrate the proper operation of this set- up.
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3 Analysing the satellite data

In this approach the question of wether the simultaneous use of different laser frequencies

would result in the same satellite range information and, under the condition that a large

amount of ranges have been measured, whether the measurements would allow for a correc-

tion of the employed atmospheric model were of interest. Therefore the analysis is limited

to the differences in the range residuals of the two spectral components. In the following,

the measurements obtained at a wavelength of 532 nm are taken as a reference to correct for

other satellite ranging side effects; a non linear least squares fitting procedure is employed

to fit a polynomial up to the order of 12 to the reference data. In the second step, the range
residuals of the measurement in the infrared spectral domain are analysed. It was assumed

that this data can be represented by the same polynomial when the additional contribution

by the atmospheric dispersion and, if applicable, the extra cable delay is taken into account.

Under the condition that the model of Marini and Murray gives a good representation of

the atmospheric influence, so that there can be a minor modification to it only, it is:

-- r(t) _-53 nm - -- ;3,

where A4 represents the contribution of the difference of the atmospheric dispersion of

the two used laser frequencies depending on the elevation angle w. o is a dimensionsless

scaling factor around the value of 1 and fl yields the constant value of the introduced extra

delay. The measured range depending on the epoch is given by r. A curve fitting result of

= 1 gives the exact representation of the Marini- Murray model. It is a known l'act that a

possible range correction for this pair of frequencies contributes with a value of only a few

ps to the difference between the two used laser frequencies at a given pointing elevation (i.e.

a fixed pathlength through the dispersive medium). This can not be taken from the range

residual distribution. However, the characteristic elevation dependence of the difference of

the ranges of the two laser frequencies places a constraint on the model, such that it might

allow an interpretation of the ranging results, especially when a wide range of elevation

angles has been spanned by the measurements. At low elevation angles, the separation

of the two frequency components is largest, so it is desirable to range down to very low

elevation angles. The model has been tested by creating a data set, introducing o -- 1.05

to an arbitrarily chosen data set of ranges artificially. After running through the evaluation

procedure a = 1.05002 was obtained as a result. This shows, that a small additionally
introduced effect could be well extracted by this procedure. However, this can not be taken

as sufficient proof for the applicability of the suggested model modification.

4 The experimental results

Up to now there are two series of measurements, one for each experimental set- up. In

figures 4 and 5 the obtained range residuals are plotted versus the angle of elevation. In

the lower part of each diagram the fitted data of the reference wavelength (_ = 532 nm) is

displayed, while the upper half shows the satellite returns taken at the other laser frequency.

In all cases a satisfying residual distribution around the fitted curve was obtained. As a side

effect, figure 5 shows a higher sensitivity of the photodiode in the infrared spectral range.

This was unexpected because the system is at least one order of magnitude more sensitive
around 532 nm. The results are summarized in table 1:

7-30



Date: Type

4. Oct. 91 MCP/APD

8. March 92 APD

0.92 44.89

1.02 -0.027

Table 1: The results of the parameter fitting procedure of the 2 LAGEOS passages

In both cases a good representation of the expected contribution of the second laserpulse

with a different wavelength was obtained. The passage of LAGEOS, measured in Oct.

1991, shows a small offset from the Marini- Murray formula, but , it is beyond the point

of interpretation within the frame of this work. More experience with this measurement

technique and much more data are necessary to judge the applicabihty of this approach.

A higher resolution in the measurement of t]_e satellite ranges is also desirable. Therefore,

a modification of this experiment using a streak camera is in preparation. The goal is a

higher precision in measuring the time difference in the roundtrip between the two spectral

components simultaneously. Furthermore, the measurements will be extended to lower

elevation angles and the search for APD's with less jitter and noise will also be continued.

Summarizing the present state of the simultaneous ranging on two different laser pulse

frequencies, one can say that the obtained ranges under normal atmospheric conditions do

not depend on the wavelength of the employed laser.
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Figure l: Block diagram for the two detector set- up
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Figure 2: Residual plot of the measured LAGEOS pass from Oct. 4th 1991 after the

screening process. The lower track was recorded using the Avalanche photodiode SPI14,

while'the upper track was obtained using a microchannel plate ITT: F 4129 f
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Figure 3: Residual plot of the measured LAG EOS pass from March 8th 1992 after the screen-

ing process. Both frequency components were recorded, using the Avalanche photodiode

SPll4
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Figure 4: The range residuals of the two different frequency components plotted versus the

angle of elevation (satellite: LAGEOS Oct. 4th 1991)
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Figure 5: The range residuals of the two different frequency components plotted versus the

angle of elevation (satellite: LAGEOS Mar. 8th 1992)
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